minions-ai-agents/docs/API_REFERENCE.md

225 lines
5.4 KiB
Markdown

# 🔧 API & Code Reference
Technical reference for the Antigravity Brain codebase.
---
## 📦 Core Modules
### src/config.py
Central configuration hub.
```python
from src.config import Config
# Get LLM configuration
llm_config = Config.get_llm_config(mode="smart") # or "fast"
# Returns: {"model": "gemini/...", "temperature": 0.7, "api_key": "..."}
# Get Memory configuration
mem_config = Config.get_mem0_config()
# Returns: {"llm": {...}, "embedder": {...}, "vector_store": {...}}
# Get Telegram token
token = Config.get_telegram_token()
```
---
### src/agents/factory.py
Agent creation from persona files.
```python
from src.agents.factory import AgentFactory
# Create agent with default tools
agent = AgentFactory.create_agent("arthur-mendes", model_tier="smart")
# Create agent with specific tools
from src.tools.zabbix import ZabbixValidatorTool
agent = AgentFactory.create_agent(
"arthur-mendes",
specific_tools=[ZabbixValidatorTool()],
model_tier="smart"
)
# List available personas
personas = AgentFactory.list_available_personas()
# Returns: ["persona-arthur-mendes", "persona-gus-fring", ...]
# Load corporate knowledge
knowledge = AgentFactory.load_knowledge_base()
# Returns concatenated string of all standards/*.md files
```
---
### src/crews/definitions.py
Crew assembly and management.
```python
from src.crews.definitions import CrewDefinitions
# Get available crews
crews = CrewDefinitions.get_available_crews()
# Returns: ["Infra Engineering (Zabbix)", "Security Audit", ...]
# Assemble a crew
crew = CrewDefinitions.assemble_crew(
crew_name="Infra Engineering (Zabbix)",
inputs={"topic": "Validate this template"}
)
# Execute crew
result = crew.kickoff(inputs={"topic": "Your task here"})
```
---
### src/router.py
Smart request routing using LLM.
```python
from src.router import SmartRouter
# Route a user request to appropriate crew
crew_name = SmartRouter.route("Check server health")
# Returns: "Infra Engineering (Zabbix)"
crew_name = SmartRouter.route("Create a new agent")
# Returns: "HR & Evolution"
```
---
### src/memory/wrapper.py
Memory tools with rate limiting.
```python
from src.memory.wrapper import SearchMemoryTool, SaveMemoryTool, MemoryWrapper
# Get memory client
client = MemoryWrapper.get_client()
# Use as tools (typically assigned to agents)
search_tool = SearchMemoryTool()
result = search_tool._run(query="What do we know about Zabbix?")
save_tool = SaveMemoryTool()
result = save_tool._run(fact="The server runs on port 8000")
```
---
## 🔧 Available Tools
### Memory Tools (src/memory/wrapper.py)
| Tool | Input | Output |
|------|-------|--------|
| `SearchMemoryTool` | `query: str` | Found memories or "No relevant information" |
| `SaveMemoryTool` | `fact: str` | "Successfully saved" or error |
### Evolution Tools (src/tools/evolution.py)
| Tool | Input | Output |
|------|-------|--------|
| `SpawnAgentTool` | `filename, name, role, goal, backstory, llm_preference` | Path to created file |
| `LearnPolicyTool` | `title, content, category` | Path to saved policy |
### Zabbix Tools (src/tools/zabbix.py)
| Tool | Input | Output |
|------|-------|--------|
| `ZabbixValidatorTool` | `file_path: str` | Validation report |
| `UUIDFixerTool` | `file_path: str` | Fixed file path |
---
## 🎭 Persona File Format
```yaml
---
description: Short description
llm_config:
provider: default # openai, gemini, ollama, default
---
# 👤 Persona: Name
**Role:** Job title
**Goal:** Primary objective
## 🧠 Backstory
Personality and background text...
```
### Parsed Fields
| Field | Source | Fallback |
|-------|--------|----------|
| `name` | First `# Heading` | "Unknown Agent" |
| `role` | `**Role:**` line | "Support Agent" |
| `goal` | `**Goal:**` or `**Especialidade:**` | "Execute tasks related to {role}" |
| `backstory` | Entire body content | - |
| `llm_config` | YAML frontmatter | `{}` |
---
## 🌐 Environment Variables
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `LLM_PROVIDER` | Yes | `openai` | gemini, openai, anthropic, ollama |
| `LLM_MODEL_FAST` | Yes | `gpt-3.5-turbo` | Model for quick tasks |
| `LLM_MODEL_SMART` | Yes | `gpt-4o` | Model for complex reasoning |
| `GEMINI_API_KEY` | If gemini | - | Google AI API key |
| `OPENAI_API_KEY` | If openai | - | OpenAI API key |
| `ANTHROPIC_API_KEY` | If anthropic | - | Anthropic API key |
| `OLLAMA_BASE_URL` | If ollama | `http://localhost:11434` | Ollama server URL |
| `MEMORY_PROVIDER` | No | `mem0` | qdrant (local) or mem0 (cloud) |
| `MEMORY_EMBEDDING_PROVIDER` | No | `openai` | local, openai, gemini |
| `QDRANT_HOST` | If qdrant | `localhost` | Qdrant host |
| `QDRANT_PORT` | If qdrant | `6333` | Qdrant port |
| `MEMORY_PROJECT_ID` | No | `default_project` | Memory namespace |
---
## 🔄 Rate Limiting Constants
In `src/memory/wrapper.py`:
```python
MAX_RETRIES = 3 # Max retry attempts on 429
RETRY_DELAY_SECONDS = 2.0 # Initial delay (doubles each retry)
MAX_CALLS_PER_MINUTE = 50 # Conservative API limit
```
---
## 🐳 Docker Services
| Service | Port | Purpose |
|---------|------|---------|
| `app` | 8000 | Chainlit web UI |
| `qdrant` | 6333 | Vector database |
| `telegram_listener` | - | Telegram bot (optional) |
---
## 📝 Logging
```python
import logging
logger = logging.getLogger("AntigravityMemory") # Memory module
logger = logging.getLogger("AntigravityConfig") # Config module
```
Logs appear in Docker: `docker logs antigravity_brain -f`